Application Areas of Fluid Mechanics
It is important to develop a good understanding of the basic principles of
fluid mechanics, since fluid mechanics is widely used both in everyday
activities and in the design of modern engineering systems from vacuum
cleaners to supersonic aircraft. For example, fluid mechanics plays a vital
role in the human body. The heart is constantly pumping blood to all parts
of the human body through the arteries and veins, and the lungs are the sites
of airflow in alternating directions. All artificial hearts, breathing machines,
and dialysis systems are designed using fluid dynamics (Fig. 1–7).
An ordinary house is, in some respects, an exhibition hall filled with applications of fluid mechanics. The piping systems for water, natural gas, and
sewage for an individual house and the entire city are designed primarily on
the basis of fluid mechanics. The same is also true for the piping and ducting
network of heating and air-conditioning systems. A refrigerator involves tubes
through which the refrigerant flows, a compressor that pressurizes the refrigerant, and two heat exchangers where the refrigerant absorbs and rejects heat.
Fluid mechanics plays a major role in the design of all these components.
Even the operation of ordinary faucets is based on fluid mechanics.
We can also see numerous applications of fluid mechanics in an automobile. All components associated with the transportation of the fuel from the
fuel tank to the cylinders—the fuel line, fuel pump, and fuel injectors or carburetors—as well as the mixing of the fuel and the air in the cylinders
and the purging of combustion gases in exhaust pipes—are analyzed using
fluid mechanics. Fluid mechanics is also used in the design of the heating
and air-conditioning system, the hydraulic brakes, the power steering, the
automatic transmission, the lubrication systems, the cooling system of the
engine block including the radiator and the water pump, and even the tires.
The sleek streamlined shape of recent model cars is the result of efforts to
minimize drag by using extensive analysis of flow over surfaces.
On a broader scale, fluid mechanics plays a major part in the design and
analysis of aircraft, boats, submarines, rockets, jet engines, wind turbines,
biomedical devices, cooling systems for electronic components, and transportation systems for moving water, crude oil, and natural gas. It is also
considered in the design of buildings, bridges, and even billboards to make
sure that the structures can withstand wind loading. Numerous natural phenomena such as the rain cycle, weather patterns, the rise of ground water to
the tops of trees, winds, ocean waves, and currents in large water bodies are
also governed by the principles of fluid mechanics (Fig. 1–8).
Great information about Application Areas of Fluid Mechanics, thanks for sharing , can also find out : Fluid Mechanics Lab Equipment manufacturer
ReplyDeletethanks @mamta
Delete