Skip to main content

Mechanics

Mechanics

 is the oldest physical science that deals with both stationary and moving bodies under the influence of forces. The branch of mechanics that deals with bodies at rest is called statics, while the branch that deals with bodies in motion is called dynamics. The subcategory fluid mechanics is defined as the science that deals with the behavior of fluids at rest (fluid statics) or in motion (fluid dynamics), and the interaction of fluids with solids or other fluids at the boundaries. Fluid mechanics is also referred to as fluid dynamics by considering fluids at rest as a special case of motion with zero velocity (Fig. 1–1). Fluid mechanics itself is also divided into several categories. The study of the motion of fluids that can be approximated as incompressible (such as liquids, especially water, and gases at low speeds) is usually referred to as hydrodynamics. A subcategory of hydrodynamics is hydraulics, which deals with liquid flows in pipes and open channels. Gas dynamics deals with the flow of fluids that undergo significant density changes, such as the flow of gases through nozzles at high speeds. The category aerodynamics deals with the flow of gases (especially air) over bodies such as aircraft, rockets, and automobiles at high or low speeds. Some other specialized categories such as meteorology, oceanography, and hydrology deal with naturally occurring flows

Comments

Popular posts from this blog

THE NO-SLIP CONDITION

 THE NO-SLIP CONDITION Fluid flow is often confined by solid surfaces, and it is important to understand how the presence of solid surfaces affects fluid flow. We know that water in a river cannot flow through large rocks, and must go around them. That is, the water velocity normal to the rock surface must be zero, and water approaching the surface normally comes to a complete stop at the surface. What is not as obvious is that water approaching the rock at any angle also comes to a complete stop at the rock surface, and thus the tangential velocity of water at the surface is also zero. Consider the flow of a fluid in a stationary pipe or over a solid surface that is nonporous (i.e., impermeable to the fluid). All experimental observations indicate that a fluid in motion comes to a complete stop at the surfaceand assumes a zero velocity relative to the surface. That is, a fluid in direct contact with a solid “sticks” to the surface, and there is no slip. This is known as the no-s...

CLASSIFICATION OF FLUID FLOWS

 CLASSIFICATION OF FLUID FLOWS Earlier we defined fluid mechanics as the science that deals with the behavior of fluids at rest or in motion, and the interaction of fluids with solids or other fluids at the boundaries. There is a wide variety of fluid flow problems encountered in practice, and it is usually convenient to classify them on the basis of some common characteristics to make it feasible to study them in groups. There are many ways to classify fluid flow problems, and here we present some general categorie Viscous versus Inviscid Regions of Flow   When two fluid layers move relative to each other, a friction force develops between them and the slower layer tries to slow down the faster layer. This internal resistance to flow is quantified by the fluid property viscosity, which is a measure of internal stickiness of the fluid. Viscosity is caused by cohesive forces between the molecules in liquids and by molecular collisions in gases. There is no fluid with zero visc...

capillary rise

A liquid of density  ρ ρ  and surface tension  σ σ  rises in a capillary of inner radius  r r  to a height h = 2 σ cos θ ρ g r h = 2 σ cos ⁡ θ ρ g r where  θ θ  is the contact angle made by the liquid meniscus with the capillary’s surface. The liquid rises due to the forces of adhesion, cohesion, and surface tension. If adhesive force (liquid-capillary) is more than the cohesive force (liquid-liquid) then liquid rises as in case of water rise in a glass capillary. In this case, the contact angle is less than 90 deg and the meniscus is concave. If adhesive force is less than the cohesive force then liquid depresses as in case of mercury in a glass capillary. In this case, the contact angle is greater than 90 deg and the meniscus is convex. The formula for capillary rise can be derived by balancing forces on the liquid column. The weight of the liquid ( π r 2 h ρ g π r 2 h ρ g ) is balanced by the upward force due to surface tension ( 2 π r σ cos θ ...